Bottom of This Page |
A big problem with the binary system is verbosity. To represent the value 202 requires eight binary digits.
The decimal version requires only three decimal digits and, thus, represents numbers much more compactly than does the binary numbering system. This fact was not lost on the engineers who designed binary computer systems.
When dealing with large values, binary numbers quickly become too unwieldy. The hexadecimal (base 16) numbering system solves these problems. Hexadecimal numbers offer the two features:
Since we'll often need to enter hexadecimal numbers into the computer system, we'll need a different mechanism for representing hexadecimal numbers since you cannot enter a subscript to denote the radix of the associated value.
The Hexadecimal system is based on the binary system using a Nibble or 4-bit boundary. In Assembly Language programming, most assemblers require the first digit of a hexadecimal number to be 0, and we place an H at the end of the number to denote the number base.
The Hexadecimal Number System:
In the Hexadecimal number system, the hex values greater than 9 carry the following decimal value:
Binary | Octal | Decimal | Hex |
0000B | 00Q | 00 | 00H |
0001B | 01Q | 01 | 01H |
0010B | 02Q | 02 | 02H |
0011B | 03Q | 03 | 03H |
0100B | 04Q | 04 | 04H |
0101B | 05Q | 05 | 05H |
0110B | 06Q | 06 | 06H |
0111B | 07Q | 07 | 07H |
1000B | 10Q | 08 | 08H |
1001B | 11Q | 09 | 09H |
1010B | 12Q | 10 | 0AH |
1011B | 13Q | 11 | 0BH |
1100B | 14Q | 12 | 0CH |
1101B | 15Q | 13 | 0DH |
1110B | 16Q | 14 | 0EH |
1111B | 17Q | 15 | 0FH |
1 0000B | 20Q | 16 | 10H |
This table provides all the information you'll ever need to convert from one number base into any other number base for the decimal values from 0 to 16.
To convert a hexadecimal number into a binary number, simply brake the binary number into 4-bit groups beginning with the LSB and substitute the corresponding four bits in binary for each hexadecimal digit in the number.
For example, to convert 0ABCDh into a binary value, simply convert each hexadecimal digit according to the table above. The binary equivalent is:
0ABCDH | = | 0000 1010 1011 1100 1101 |
To convert a binary number into hexadecimal format is almost as easy. The first step is to pad the binary number with leading zeros to make sure that the the binary number contains multiples of four bits. For example, given the binary number 10 1100 1010, the first step would be to add two bits in the MSB position so that it contains 12 bits. The revised binary value is 0010 1100 1010.
The next step is to separate the binary value into groups of four bits, e.g., 0010 1100 1010. Finally, look up these binary values in the table above and substitute the appropriate hexadecimal digits, e.g., 2CA.
The weighted values for each position is as follows:
16^3 | 16^2 | 16^1 | 16^0 |
4096 | 256 | 16 | 1 |
It is easy to convert from an integer binary number to hex. This is accomplished by:
For example, the binary value 1010111110110010 will be written:
1010 | 1111 | 1011 | 0010 |
A | F | B | 2 |
It is also easy to convert from an integer hex number to binary. This is accomplished by:
For example, the hex value 0AFB2 will be written:
A | F | B | 2 |
1010 | 1111 | 1011 | 0010 |
This yields the binary number 1010111110110010 or 1010 1111 1011 0010 in our more readable format.
To convert from Hex to Decimal, multiply the value in each position by its hex weight and add each value. Using the value from the previous example, 0AFB2H, we would expect to obtain the decimal value 44978.
A*16^3 | F*16^2 | B*16^1 | 2*16^0 |
10*4096 | 15*256 | 11*16 | 2*1 |
40960 | 3840 | 176 | 2 |
40960 + 3840 + 176 + 2 = 44978
To convert decimal to hex is slightly more difficult. The typical method to convert from decimal to hex is repeated division by 16. While we may also use repeated subtraction by the weighted position value, it is more difficult for large decimal numbers.
For this method, divide the decimal number by 16, and write the remainder on the side as the least significant digit. This process is continued by dividing the quotient by 16 and writing the remainder until the quotient is 0. When performing the division, the remainders which will represent the hex equivalent of the decimal number are written beginning at the least significant digit (right) and each new digit is written to the next more significant digit (the left) of the previous digit. Consider the number 44978.
Division | Quotient | Remainder | Hex Number |
44978 / 16 | 2811 | 2 | 2 |
2811 / 16 | 175 | 11 | B2 |
175 / 16 | 10 | 15 | FB2 |
10 / 16 | 0 | 10 | 0AFB2 |
As you can see, we are back with the original number. That is what we should expect.
When you use hex numbers in an 8085 program, the Assembler usually requires the most significant hex digit to be 0 even if this number of digits exceed the size of the register. This is an Assembler requirement and your value will be assembled correctly.
A logarithm is used when working with exponentiation. We all learned
that the formula X = YZ
Y
and multiply it by itself the number of times
specified by Z
. For example,
23 = 8
2*2*2
).Z
is the exponential value of the equation. As
long as you know what the Y
and Z
values
are in the equation, it is easy to calculate the value of
X
. /
En logaritme bruges, når der udregnes med eksponent. Vi lærte
alle, at formlen X = YZ
Y
og multiplicer (gang) den med sig selv
antallet af gange angivet af Z
. For eksempel,
23 = 8
2*2*2
).Z
er eksponentiel-værdien i ligningen.
Så længe man kender, hvad Y
og Z
værdierne er i ligningen, er det nemt at beregne værdien af
X
.
Unfortunately, you may not always know the value of Y
and
Z
. How do you determine Z
if you know the value
of X
and Y
? This is when you use a logarithm. A
logarithm is the exponent value that indicates the number of times the
value Y
needs to be multiplied by itself to get the value
X
. The value that is multiplied Y
)Y
og
Z
. Hvordan bestemmer man Z
, hvis man kender
værdien af X
og Y
? Det er da, man bruger
en logaritme. En logaritme er eksponent-værdien, som angiver
antallet af gange værdien Y
behøver at blive
multipliceret (ganget) med sig selv for at få værdien
X
. Værdien som er multipliceret (ganget)
Y
)
There are two basic types of logarithms: common and natural.
A common logarithm uses a value 10 as the base value. Therefore,
in the basic formula for exponentiation above,
X = YZ
,Y
is 10, and Z
is the number of
times that Y
needs to be multiplied by itself
to return the value indicated by X
. /
Der er to grundlæggende typer af logaritmer:
sædvanlig og naturlig. En sædvanlig logaritme
bruger en værdi 10 som grundtal. Derfor i den
grundlæggende eksponent-formel ovenfor,
X = YZ
,Y
10, og Z
er antallet af gange
som Y
behøver at blive multipliceret
(ganget) med sig selv for at returnere værdien angivet
af X
.
Natural logarithms use a base value of approximately
2.71828182845905, normally referred to as e
.
The mathematical notation e
is Euler's
constant, the base of natural algorithms, made
common by the mathematician Leonhard Euler
(Basel, Switzerland April 15, 1707 -
Russia September 18, 1783).
VBScript provides two functions for working with
logarithms: Exp()
Log()
.e
. The
Log()
Exp()
e
. The
similar methods in JavaScript is called:
Math.exp()
Math.log()
.e
. Den matematiske notation e
er Eulers konstant, de naturlige algoritmers grundtal, gjort
alminding af matematikeren Leonhard Euler
(Basel, Schweiz 15. april 1707 -
Rusland 18. september 1783).
VBScript har to funktioner til udregninger med
logaritmer: Exp()
Log()
.e
.
Log()
Exp()
e
. De lignende
metoder i JavaScript kaldes: Math.exp()
Math.log()
.
It is possible to use these VBScript functions or JavaScript
methods if you have a different base value by using a simple
formula. By dividing the natural log of the desired number
X
)Y
),Z
)Z = Log(X) / Log(Y)
Z = ((Math.log(X)) / (Math.log(Y)));
.X
)Y
),Z
)Z = Log(X) / Log(Y)
Z = ((Math.log(X)) / (Math.log(Y)));
.
The custom function Pow2(NumDbl)
Log2(NumDbl)
Math.pow()
Math.log()
Pow2(NumDbl)
Log2(NumDbl)
Math.pow()
Math.log()
You can see the JavaScript by using View Source. / Man kan se JavaScript'et ved at bruge Vis Kilde.
Sources: Various books, the Internet, and various encyclopedias.
Kilder: Forskellige bøger, internettet og forskellige leksikoner.
|